Search results

Search for "substrate stiffness" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • unclear how mechanical properties regulate the cellular response to the environmental matrix. In this study, atomic force microscopy (AFM) and laser confocal imaging were used to qualitatively evaluate the relationship between substrate stiffness and migration of prostate cancer (PCa) cells. Cells
  • substrate stiffness and the mechanical properties of cells in prostate tumour metastasis, providing a basis for understanding the changes in the biomechanical properties at a single-cell level. Keywords: actin cytoskeleton; atomic force microscopy; migration; prostate cancer cells; substrate stiffness
  • factors, but also provides a suitable mechanical environment for cells, including physical signals such as substrate stiffness, hydrostatic pressure, shear stress, strain, pressure, and tension [7][8][9]. These mechanical factors play an important role in regulating normal cellular physiological functions
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • the cell–substrate interface are two key properties influencing cell behavior. In this paper, atomic force acoustic microscopy (AFAM) is used to investigate the influence of substrate stiffness and substrate topography on the responses of L929 fibroblasts. This combined nondestructive technique is
  • engineering [1][2] as they affect many cell functions such as cell migration [3][4], attachment, proliferation [5][6] and differentiation [7][8]. Substrate stiffness and topography are two of the most important ECM physical parameters in regulating cell functions [9]. A previous study shows that cells
  • acoustic images depict more details of the real nanostructures at higher contrast and lower noise. Influences of substrate stiffness on L929 cell morphology and migration After substrate fabrication, we cultured L929 cells on the undeveloped SU-8 films of different stiffness and on a reference glass
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • interlocking of the soft substrate into the holes of the terminal layer. Pull-off from soft substrates increased with the substrate stiffness for all tested geometries. Friction forces on soft substrates were the highest for microscale dimples without a terminal layer, likely due to interlocking of the soft
  • vs 280 kPa), and substrate stiffness (18 vs 12 kPa) showed significant main effects for the sample geometry (F(2,46) = 18.31, p < 0.001) and substrate stiffness (F(1,46) = 19.29, p < 0.001); the main effect of sample stiffness was not significant (F(1,46) = 2.32, p = 0.135). An interaction effect
  • between sample geometry and substrate stiffness was also observed (F(2,46) = 29.61, p < 0.001). Post-hoc analysis showed that, on the softer PVA (PVA-12) and for both sample stiffness degrees, pull-off force of microscale dimples with a terminal layer was significantly higher than the pull-off force on
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • of vinculin spots on pillars with heights of 2 µm after 7 days of culturing appeared weaker than the strength after 1 day of culturing. The difference in distribution or strength of vinculin spots may be caused by substrate stiffness [63]. These data support the concept that patterning of gelatin
PDF
Album
Full Research Paper
Published 11 Jun 2018

Influence of the PDMS substrate stiffness on the adhesion of Acanthamoeba castellanii

  • Sören B. Gutekunst,
  • Carsten Grabosch,
  • Alexander Kovalev,
  • Stanislav N. Gorb and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2014, 5, 1393–1398, doi:10.3762/bjnano.5.152

Graphical Abstract
  • exclusively in mammalian cells. Much less attention has been paid to mechanosensing in other cell systems, such as in eukaryotic human pathogens. Results: We report here on the influence of substrate stiffness on the adhesion of the human pathogen Acanthamoebae castellanii (A. castellanii). By comparing the
  • cell adhesion area of A. castellanii trophozoites on polydimethylsiloxane (PDMS) substrates with different Young’s moduli (4 kPa, 29 kPa, and 128 kPa), we find significant differences in cell adhesion area as a function of substrate stiffness. In particular, the cell adhesion area of A. castellanii
  • and position themselves [6]. Once grown on a substrate with defined elasticity, cells adapt their own elasticity to the elasticity of their environment [7]. But not only differentiated cells are influenced by substrate stiffness. For stem cells it has been demonstrated that their differentiation is
PDF
Album
Full Research Paper
Published 28 Aug 2014
Other Beilstein-Institut Open Science Activities